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Abstract
Two neurons coupled by unreliable synapses are modelled by leaky integrate-
and-fire neurons and stochastic on–off synapses. The dynamics is mapped
to an iterated function system. Numerical calculations yield a multifractal
distribution of interspike intervals. The covering, information and correlation
dimensions are calculated as a function of synaptic strength and transmission
probability.

PACS numbers: 05.45.Df, 87.19.La, 05.45.−a, 05.45.Xt

Networks of pulse-coupled oscillators are simple models which have been investigated in the
context of synchronization and dynamical clustering [1, 2]. In particular, the dynamics of
neurons interacting by synaptic transmission has been described by pulse-coupled oscillators,
for instance, networks of leaky integrate-and-fire neurons [3, 4]. These models consist of
oscillators sending spikes to other oscillators which either excite or inhibit the phase of the
receiving units.

So far, only deterministic interactions between oscillating units have been considered.
Synaptic transmission, however, seems to be a stochastic process. In the cortex, transmission
probabilities between 10% and 90% are reported [5, 6]. Hence, it is important to understand
the dynamics of oscillators coupled by unreliable transmission of pulses.

A quantitative measure of the activity of neurons is the distribution of their interspike
intervals. Typically, one observes broad distributions which may be described by a simple
mathematical approach: each neuron is modelled by a stochastic process which is driven
by random uncorrelated synaptic inputs. Hence, usually the effect of unreliable synapses is
modelled by an external uncorrelated noise [3, 4].

In this letter we investigate the dynamics of two integrate-and-fire units coupled by
unreliable synapses. The transmission of pulses is explicitly modelled by a Bernoulli process:
any synapse transmits the incoming spike with some probability p which is independent
of the state of the system. We show how to calculate the spike intervals from an iterated-
function system (IFS). Our main result is a multifractal distribution of interspike intervals. The
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Figure 1. Membrane potential of the two neurons. The spike of neuron A at time t1 is transmitted
to neuron B.

covering, information and correlation dimensions are calculated as a function of the synaptic
strength and the probability of synaptic transmission. We find a transition between connected
and multifractal support of the distribution of spike intervals.

Our model neurons are leaky integrate-and-fire units working above threshold. In a
more general framework, our model is a system of two identical pulse-coupled oscillators [1].
Without synaptic contacts the neurons are deterministic and oscillate periodically, one obtains
two intervals between the firing times of the two neurons. With reliable inhibitory synaptic
contact, and without any delay of the synaptic transmission, the two neurons relax into a state
of anti-phase oscillations with a single spike interval. With unreliable synapses, however, the
system has a broad distribution of spike intervals which becomes multifractal in some range
of the model parameters.

In our model, each neuron is described by the following differential equation for the
time-dependent membrane potential V (t):

τ
dV

dt
= µ − V (t). (1)

As soon as the potential crosses a threshold value θ it is reset to a value Vr < θ . In addition it
fires, i.e. it sends a spike to its neighbour which is transmitted with a probability p. If a spike
is transmitted, it reduces the potential of the receiving neuron by an amount J . For simplicity,
we consider only inhibitory synapses to avoid an introduction of a refractory time.

The neurons are working above threshold, θ < µ, otherwise they would not fire at all.
Hence, the parameter µ controls the effect of any mechanism which forces the neurons to fire.
Without synaptic couplings each neuron fires periodically with the period

T = τ ln
µ − Vr

µ − θ
. (2)

Without loss of generality we set Vr = 0, µ = 1 and τ = 1, and in the following we use the
parameter θ = 0.95 which gives a period of T � 2.996τ .

Figure 1 shows the potential of the two neurons for a typical situation. At time t1 the
neuron A fires and the spike is transmitted to neuron B resulting in a decrease of the potential
by an amount J . The next firing event occurs at time t2. The time interval between firing
events is denoted by �. Using the analytic solution of the differential equation (1), one obtains
an iteration of the spike intervals �. For the quantity x = exp(−�) the iteration has the form

x ′ = fi(x), i ∈ {1, 2, 3, 4, 5}, (3)
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(a) (b)

Figure 2. Histogram of the spike intervals for the transmission probability p = 0.5 and the
strength of the synaptic pulse J = 0.1 (a) and J = 0.25 (b).

where the five functions fi are selected according to the transmission probability p and the
previous value of x. For the situation of figure 1, which occurs with probability p (transmission),
one finds

x ′ = 1 − θ

x + J
=: f1(x). (4)

With probability 1 − p (no transmission) the sum � + �′ = T is identical to the period of
unperturbed oscillations which gives

x ′ = 1 − θ

x
=: f2(x). (5)

Hence, two simple functions are iterated according to probability p of synaptic transmission.
The situation becomes slightly more complicated when neuron A overtakes neuron B, i.e.
when one neuron fires twice before the other one is firing again. This occurs when the
potential VB(t1+) becomes negative after neuron A has fired, that is when x > 1 − J . In this
case one has �′ = T or

x ′ = 1 − θ =: f3(x). (6)

But now �′′ depends on � and one finds with probability p

x ′′ = 1

x + J + J
1−θ

=: f4(x) (7)

and with probability 1 − p

x ′′ = 1

x + J
=: f5(x). (8)

If the synaptic pulse J is larger than θ/(2 − θ) the same neuron can even fire more than twice
in a row, but we do not consider such large unphysiological values of J .

In summary, only five simple functions are iterated to calculate the distribution of spike
intervals �. It is well known that such a system (IFS) may lead to a fractal structure of the set
of iterated values [7]. In our numerical simulations of equations (4) to (8) we have generated
about 1011 spike intervals for each set of parameters. Figure 2 shows two histograms of the
spike intervals for small and large values of J . Obviously, the distribution of spike intervals
has a complex structure which we quantify by the Rényi dimensions [8]

D(β) = lim
ε→0

1

ln ε
I (β), I (β) = 1

β − 1
ln

r∑

i=1

pi
β. (9)
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Figure 3. The quantity Iβ as a function of the size ε of the covering boxes (here for β = 1, p = 0.5
and J = 0.15). The slope of the figure is an estimate of the Rényi dimensions D(β) which are
shown in figure 4.
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Figure 4. Rényi dimensions (a) as a function of the strength J of the synaptic pulse (for p = 0.5)
and (b) as a function of the transmission probability p (for J = 0.25)

Here, ε is the size of the boxes of the histogram and pi is the normalized number of data
points in the box i. The sum runs over all nonempty boxes. For β = 1, the entropy
I (1) = ∑r

i=1 pi ln pi is calculated.
We consider three Rényi dimensions: the covering or box dimension D(0), the information

or entropy dimension D(1) and the correlation dimension D(2). Figure 3 shows that a
plot of I (β) versus ln ε yields a straight line over several orders of magnitude; hence, the
corresponding dimension can reliably be estimated from the slope of this line. In addition, we
checked our results for the correlation dimension by applying the software package TISEAN
to our data [9].

The results for the three different Rényi dimensions are shown in figure 4. Of course,
our results obey the exact relations D(2) � D(1) � D(0). With increasing coupling strength
J and transmission probability p the three dimensions decrease. For small values of J the
distribution of spike intervals is smooth; hence, one observes D(0) � D(1) � D(2) � 1.
For large values of J the three dimensions are different, which means that the distribution of
spike intervals is multifractal [8]. While the covering dimension D(0), i.e. the structure of the
support of the distribution, is insensitive to the value of p, the information dimension as well
as the correlation dimension decrease to the value zero in the deterministic limit p → 1. In
fact, for p = 1, the distribution of spike intervals is a delta peak at the fixed point of f1 which
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Figure 5. The phases φ of the neurons are iterated by the two functions F1 (bottom) and F2 (top)
shown by the dashed lines. The openings of the two functions show the empty intervals in the
distribution of iterated phases.

gives � = − ln
(−J +

√
4 + J 2 − 4θ

)/
2. Surprisingly, even for p < 1 the distribution has

its maximum at this value, a sharp peak, as can be seen from figure 2.
The results of figure 4(a) do not rule out a sharp transition between a smooth and

multifractal distribution of spike intervals. In fact, for the covering dimension D(0), the
transition point can be found analytically. It is convenient to transform equation (1) to
dφ/dt = 1, where the phase φ is defined as

φ(V ) = −ln(1 − V ). (10)

Now we consider the phase which one neuron occupies after the other one has fired. After
the neuron A has fired it has the phase φ = 0, whereas the other neuron B has a nonzero
phase φi . If φi is positive it will be neuron B which fires next, namely, after the time T − φi .
However, if φi is negative then neuron A will fire again after the time T. Regardless of which
neuron fires, in both cases we record the phase φi+1 of the neuron which has not fired. Given
a phase φi , the next phase φi+1 results by applying one of the two mappings depending on
whether a spike has been transmitted at time ti+1 or not. These two mappings φi+1 = F1(φi)

and φi+1 = F2(φi) which describe the transformation of phases are as follows (see figure 5):

F1(φ) = −ln[exp(|φ| − T ) + J ] (transmission) (11)

F2(φ) = T − |φ| (no transmission). (12)

The function F2 just flips the lower interval [0, T /2] to the upper one [T/2, T ]. The function
F1 maps the complete interval [0, T ] to the interval [−ln(1 + J ),− ln(1 − θ + J )]. If the
maximum of F1 is smaller than T/2, then there exists an interval in the vicinity of T/2 which
cannot be reached from outside. In figure 5 this interval is indicated by the small square in the
centre of the figure. This interval in the centre is either flipped by F2 or mapped to an interval
outside it by F1. This means that finally any point inside the square will leave it. In addition,
no other point can enter this interval. Hence, the distribution of phases has an opening on this
interval. By consecutive iterations of F1 and F2 this opening is distributed on the complete
range of phases, as depicted in figure 5 by the openings in the functions F1 and F2. This
indicates—but does not prove it—that the support of the distribution of spike intervals has a
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fractal structure, leading to D(0) < 1. By these arguments the support of the distribution has
a fractal structure if the maximum of F1 is smaller than T/2, which gives a critical point

J∗ = √
1 − θ − (1 − θ). (13)

For J < J∗ the distribution fills the complete range of φ values, while for large values of J the
distribution has empty intervals. Indeed, this value is consistent with the data of figure 4(a)
where the covering dimension D(0) deviates from the value D(0) = 1 at about J∗ = 0.1736.
Note, however, that even below J∗ the distribution is multifractal because the values of D(1)

and D(2) are still smaller than 1. We do not know whether there is a sharp transition to a
smooth structure for small J values or whether the fractal dimensions D(1) and D(2) just
come very close to the value 1. The data of figure 4 do not allow to distinguish between these
two possibilities.

This letter reports a new phenomenon which may be related to the dynamics of real
neurons. On one side, our system of two identical pulse-coupled oscillators with random
on–off synapses is a very simplified model of two coupled neurons. For instance, synaptic
transmission may be multi-valued [10, 11] and time delayed [2], and a much better model
would include the dynamics of ion channels [12]. In addition, it is clear that any kind of noise
will smear out the distribution of spike intervals. On the other side, in any model, a random
uncorrelated process which opens and closes synaptic transmission always yields an iterated
function system which can produce fractal distributions of spike intervals depending on the
model parameters. Up to now, a fractal structure of spike intervals has not yet been observed.
But, to our knowledge, experiments on two interacting neurons under controlled conditions
have not yet been reported, either. Our model makes predictions for such an experiment which
may help to clarify the stochastic nature of synaptic transmission.

Acknowledgment

We would like to thank Haye Hinrichsen and Georg Reents for useful discussions.

References

[1] Mirollo R E and Strogatz S H 1990 Synchronization of pulse-coupled biological oscillators SIAM J. Appl.
Math. 50 1645–62

[2] Ernst U, Pawelzik K and Geisel T 1995 Synchronization induced by temporal delays in pulse-coupled oscillators
Phys. Rev. Lett. 74 1570–4

[3] Tuckwell H C 1988 Introduction to Theoretical Neurobiology (Cambridge: Cambridge University Press)
[4] Gerstner W and Kistler W 2002 Spiking Neuron Models (Cambridge: Cambridge University Press)
[5] Abeles M 1991 Corticonics (Cambridge: Cambridge University Press)
[6] Allen C and Stevens C F 1994 An evaluation of causes for unreliability of synaptic transmission Proc. Natl

Acad. Sci. USA 91 10380–3
[7] Barnsley M F 1989 Fractals Everywhere (Boston: Academic)
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